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I describe an extensive experimental study of the structure, propagation, and stability of one-
dimensional confined states of traveling-wave convection in ethanol-water mixtures in an annular con-
vection cell. The widths of these confined states are found to form a discrete set in parameter space.
The principal difference between wide and narrow confined states lies in their dynamical stability: wide
confined states are unstable for ¥R —0.13 and can only be maintained in a steady state using active ser-
vo control, whereas narrow “pulses” are stable for all separation ratios studied. These observations are
in qualitative agreement with the predictions of a complex-Ginzburg-Landau-equation model and in
disagreement with previous observations of a continuum of confined-state widths at separation ratio
= —0.25. These experiments also document new confined states, including one in which lines of spa-
tiotemporal dislocations separate slow and fast traveling waves.

PACS number(s): 47.27.Te, 47.20.Bp, 47.20.Ky

I. INTRODUCTION

One of the most intriguing aspects of traveling-wave
(TW) convection in binary fluid mixtures is the existence
of confined states: spatially localized convecting regions
which are surrounded by quiescent fluid. Stable confined
states whose width was =5 times the height of the exper-
imental cell were first observed at separation ratio
%= —0.08 in the one-dimensional geometry defined by a
narrow, rectangular convection cell [1]. Subsequently,
very wide confined states were observed in experiments
using a fluid with ¢y=—0.25 in a long, narrow annulus
[2]. Dynamical confined states which “blink” back and
forth across a narrow rectangular cell have been studied
in great detail at small |¢| [3]. Finally, experiments in
very wide cells have demonstrated the existence of two-
dimensional confined states for a range of separation ra-
tios [4].

Interest in this subject has focused mainly on the nar-
row confined states, first observed for = —0.08 in Ref.
[1], rather than on the wider structures seen at more neg-
ative 1. One reason for this is that the spatial structure
of narrow confined states bears a strong resemblance to
that of “pulse” solutions of the complex Ginzburg-
Landau equation (CGLE), which is often used to model
this system [5-8]. Another reason is the ubiquity of ex-
perimental “pulses”: they are the first convective state
seen above onset over a wide range of 1, they persist over
a finite range of Rayleigh number r near onset, and their
spatial structure varies weakly with ¥ and r. TW pulses
are in fact rather difficult to avoid in experiments on this
system. Extensive experimental study has been directed
at clarifying the issues of existence and structure [9-11],
drift [10,12], stability [10,13-15], and collisions [16] of
TW pulses. Theoretical understanding of these observa-
tions has advanced via numerical and analytical work on
the CGLE [5-8,17], by the extension of this model to in-
clude the effects of “self-trapping” of pulses by their own
convective concentration field [18], and through numeri-
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cal integration of the full Navier-Stokes equations [19].

The wide confined states observed at more negative ¢
have received comparatively less theoretical and experi-
mental attention. This is partly because of our intuition
that the “weakly nonlinear” CGLE model becomes less
and less relevant to the “strongly nonlinear” experimen-
tal behavior that is encountered as ¥ is made more nega-
tive. Indeed, the spatial structure of these states has so
far been accounted for in detail only by numerical in-
tegrations of the full fluid equations [19,20]. More im-
portantly, however, the qualitative behavior of these wide
confined states exhibited two features which directly con-
tradict the predictions of the CGLE model: they did not
drift, and they exhibited a continuous family of widths.
In the experiments reported in Ref. [2], motionless, stable
confined states of any desired width could be maintained
for any Rayleigh number inside a ‘“locking band” of
width 2.3%. [Another way to say this is that the subset
of the (r,w) plane on which time-independent confined
states were seen consisted of a continuous, two-
dimensional area.] For this reason, these wide states
were given the designation “arbitrary width.” But the ex-
istence of a continuum of confined-state widths over a
finite range of parameters is not consistent with the
CGLE; in this model, pulse solutions form a discrete,
countable set [6]. On this basis, one would expect to find
that the subset of the (r,w) plane on which time-
independent confined states are seen at a fixed separation
ratio consists of a set of measure zero: a curve or a group
of points. Furthermore, in a system with continuous
translational symmetry, the drift velocity of pulse solu-
tions to the CGLE vanishes only for a set of parameters
which has measure zero. Thus arbitrary-width confined
states which were motionless over range of Rayleigh
numbers appeared anomalous, both in the context of the
CGLE model and in comparison with the experimental
behavior of narrow pulses at less negative separation ra-
tio.

Thus there remain several important open questions in
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our understanding of one-dimensional confined states of
TW convection: (1) What is the relationship between
wide and narrow confined states? (2) What are their
domains of existence in parameter space? Do these
domains overlap? (3) Why do arbitrary-width confined
states not drift, and why is there a locking band? (4) Are
there other time-independent confined states which have
not yet been observed?

This paper addresses these questions through a series
of experiments on fluids with ¥=—0.127, —0.167,
—0.210, and —0.253 in a narrow, extremely uniform, an-
nular convention cell. From the results of these experi-
ments, a simple, comprehensive picture has emerged:
For any ¢ in a wide range of separation ratios, confined
states of any width w greater than about 5 times the cell
height can be observed. All confined states drift through
the cell at constant velocity vg4.; vy, is a continuous func-
tion of parameters which vanishes only on a set of mea-
sure zero. The observed dynamics of confined states of
all widths can be expressed in terms of a differential equa-
tion for the confined-state width:

, aw
° dt

Here 7,(w)>0 is a characteristic time and r,(w) is the
neutral Rayleigh number at which a confined state of
width w neither grows nor shrinks in space. The quanti-
tative results presented in this paper consist of the mea-
surement of 7,(w) and of r,(w) at several separation ra-
tios. As explained in Sec. III below, the function r,(w)
expresses the dynamical stability of the confined states,
and herein lies the principal reason why wide and narrow
confined states have previously been seen only at different
separation ratios: wide confined states are stable for
¥ < —0.167, but at smaller |¢|, they are unstable and can
only be maintained using active servo control. Narrow
confined states are stable and easily observable at all ¢
studied.

The widths of the time-independent confined states ob-
served in these experiments form a discrete set in parame-
ter space. What this means experimentally is that, for a
given 9, the equation dw/dt=0 is satisfied only on a
measure-zero subset—a curve—of the (r,w) plane. Ex-
amples of such curves are given in Fig. 32 below. In con-
trast, the “locking band” described in Ref. [2] is a two-
dimensional region in this plane: a strip of finite width in
both r and w. The experimental situation documented in
this work is qualitatively consistent with the picture that
emerges from the study of simple solutions of the CGLE
[6-8].

Along with the locking band, the lack of drift de-
scribed for wide confined states in Refs. [2,20] has also
not been reproduced in the present work. The major
reason for this is that, for —0.25 Sy < —0.19, the drift
velocity of wide confined states is very small and almost
independent of Rayleigh number. Thus these structures
are easily pinned by weak, local inhomogeneities in the
experimental cell; once pinned, it takes a large change in
Rayleigh number to unpin them again. Avoiding this ar-
tifactual behavior has required the development of an ex-
tremely uniform convection cell.

=r—r,(w) . (1
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The final observations in this work demonstrate that
there is indeed a type of persistent confined state which
has not been previously documented: a weakly unstable,
defected confined state in which regions of slow and fast
TW coexist, separated by lines of spatiotemporal disloca-
tions.

The rest of this paper is organized as follows. The ap-
paratus and procedures used in these experiments are de-
scribed in Sec. II. The model presented in Eq. (1) above
for the evolution of confined states is discussed further in
Sec. IIT and its application to data analysis is described.
Stable and wunstable confined states observed at
= —0.127 are described in Sec. IV. Section V contains
observations of wide confined states for yy=—0.253; a
preliminary version of some of these results has already
appeared in Ref. [21]. Sections VI and VII contain de-
tailed characterizations of confined states of all widths at
¥=—0.210 and —0.167, respectively. New confined
states observed at Y= —0.127 and —0.167 are described
in Sec. VIII. A summary and discussion follow in Sec.
IX.

II. APPARATUS AND PROCEDURES

The apparatus and techniques used in these experi-
ments have been extensively described in recent publica-
tions [10,16,22,23]. The cell is an annular channel of
height d=0.2737 cm, radial width 1.677d, and mean cir-
cumference 82.47d, formed by a concentric plastic disk
and ring which are clamped between an electrically heat-
ed, mirror-polished silicon bottom plate and a transpar-
ent, water-cooled sapphire top plate. The long- and
short-term fractional stability of the applied vertical tem-
perature difference is 5X 107°. By means of 24 adjustable
trim heaters arranged in a circle on the underside of the
bottom plate of the cell, and using the pulse-drift tech-
nique described in Refs. [10,16], the spatial profile of the
applied temperature difference can be measured and
made uniform to within 4X 10™%. These trim heaters can
also be used to deliberately apply strongly nonuniform
heating of the bottom plate.

The flow patterns produced in this cell are viewed by a
shadow graphic flow-visualization system and are record-
ed by an annular array of 720 photodiodes under the con-
trol of a small computer. These patterns consist of radial
wave fronts which propagate azimuthally around the cell
under a spatially localized amplitude profile. The princi-
pal analysis of the data consists of the calculation of the
amplitude and wave-number profiles by demodulation in
space at the measured mean wave number, using the
techniques described in Refs. [22,23]. The precision of
these calculations is at the 1% level. All of the flow visu-
alizations reported in this paper were made with the same
settings of the optical system, so that TW amplitude
profiles for confined states at different separation ratios
can be compared directly. While these computations are
usually done off line to take advantage of the properties
of noncausal digital filters, it has also been useful to per-
form real-time demodulation for monitoring and control-
ling the widths of confined states. These procedures will
be discussed in Sec. III below. In addition to the calcula-
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tion of amplitude and wave-number profile, temporal
demodulation at each spatial point in the shadowgraph
image has been used to produce spatial maps of the oscil-
lation frequency for selected data sets. Finally, TW
phase velocities and amplitude-profile drift velocities
have been measured either from the computered wave-
number, amplitude, and oscillation-frequency profiles or,
in cases where less precision is required, simply by laying
a ruler on graphs of the space-time trajectories of TW roll
boundaries and of the leading and trailing edges of
confined-state amplitude profiles. The signs of drift ve-
locities are defined with respect to the direction of propa-
gation of the underlying TW’s, and all of the demodulat-
ed wave-number and amplitude profiles presented in this
paper have been plotted so that the TW’s propagate to
the right.

The fluids used in these experiments are aqueous solu-
tions of ethanol whose thermophysical properties are list-
ed in Table I [24]. Table I also lists some landmark Ray-
leigh numbers. It should be noted that the Rayleigh
numbers quoted herein for experiments on confined states
at Y= —0.127 have been calibrated exactly against the
Rayleigh numbers measured in Ref. [22]. As usual, the
Rayleigh numbers quoted in this paper have been nor-
malized to the calculated critical Rayleigh number for
the onset of convention in a pure fluid in an infinite sys-
tem; such “reduced Rayleigh numbers” are symbolized
by a lowercase r. As is also usual, I have scaled lengths
with the cell height d, velocities with d /7,, and frequen-
cies with 7, !, where the vertical thermal-diffusion time
T, is listed for each experimental fluid in Table I.

It is useful to define a few points of nomenclature used
in this paper. The term “confined state” will be given
generically to any slowly varying TW structure which
does not fill the experimental cell. The word “pulse” is
generally used to describe strongly stable confined states
of widths between 4 and 6 times the cell height; the
meaning of the term ‘“‘strongly stable” is made clear
below. The repeated exception to this rule concerns wide
‘“unstable pulses,” which are described in Sec. IV. “Ex-
tended states” are patterns of spatially uniform amplitude
which fill the entire experimental cell.

I conclude this section with a discussion of the major
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sources of uncertainty in the Rayleigh numbers, which
are somewhat different for confined-state experiments
than for the extended-state observations in Ref. [22].
There are four: slow drifts, new uncertainties in the com-
putation of the Rayleigh number from the experimentally
applied temperature difference, spatial nonuniformities,
and absolute uncertainties.

As described in Ref. [22], long-term measurements in
this system are subject to small Rayleigh-number drifts
which appear to be caused by a slow decrease in the con-
centration of the experimental fluid. These drifts are so
small that they can be monitored by repeated measure-
ment of the oscillation frequency of extended states of
TW’s and compensated by applying a time-dependent
Rayleigh-number correction. This polynomial correction
is adjusted by minimizing the rms deviation of the ensem-
ble of frequency measurements from a heavily smoothed
spline fit. In the present work, observations of confined
states were interspersed with many such TW frequency
measurements and the optimized drift correction was ap-
plied to the Rayleigh numbers recorded for the confined-
state measurements. The fractional drift rates observed
here were smaller than those reported in Ref. [22]—
(0.3-0.5)X10™% per day, maximum drift correction
0.003—and the rms deviation of the frequency measure-
ments from the smoothed spline fit corresponded to a
Rayleigh-number uncertainty of +(1.6-1.8)X 1074, de-
pending on .

Reference [22] also contained a discussion of the pro-
cedure used to convert the experimentally applied tem-
perature differences into Rayleigh numbers. This is ac-
complished by computing the temperature field inside the
experimental cell, using a numerical integration of the
heat equation which assumes azimuthal symmetry. The
computation incorporates the geometry of the cell and
the thermal properties of the materials used in its con-
struction, as well as a heuristic model for convective heat
transport by spatially uniform states of nonlinear TW’s.
The uncertainties in this model caused a relative uncer-
tainty of £1X 10~ in the Rayleigh numbers computed
for different extended states of nonlinear TW’s at the
same separation ratio. However, extending this model to
confined states of TW’s presents two problems. First, the

TABLE 1. Fluid parameters and Rayleigh-number landmarks. Conc. denotes the ethanol concentra-
tion by weight. T, is the temperature in degrees Celsius at midheight in fluid layer. The absolute
uncertainty is ~0.03°C. ¢, P, and L are the separation ratio, Prandtl number, and Lewis number, re-
spectively, from Ref. [24]. 7, is the vertical thermal-diffusion time in seconds. The approximate abso-
lute uncertainties in ¢, P, L, and 7, are 1.5%, 3%, 5%, and 2%, respectively. Relative uncertainties in
all of these parameters are probably <1%. r; is the saddle-node Rayleigh number, below which ex-
tended states of nonlinear TW lose stability to the conductive state. r,(w=12) is the Rayleigh number
at which a confined state of width 12 neither grows nor shrinks in space. r,, is the threshold at which
the quiescent state loses stability to small-amplitude traveling waves.

Conc. T ean Y P L Ty r r,(w=12) Teo

0.028 27.51 —0.127 6.862 0.0083 52.6 1.22643(10) 1.3002(8) 1.291 33(36)
0.040 27.68 —0.167 7.309 0.0083 53.2 1.2414(8) 1.307 4(4) 1.348 79(10)
0.056 27.81 —0.210 7.932 0.0082 54.2 1.279 3(5) 1.336 89(22) 1.429 87(16)
0.080 27.82 —0.253 8929 0.0079 556 1.2421(8) 1.33745(24) 1.46023(17)
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localized heat transport by confined states breaks the az-
imuthal symmetry of the calculation. Worse, our under-
standing of the heat transport by confined states is even
more sketchy than that for extended states. The simplest
ad hoc solution to this problem is to continue to model
this situation with an azimuthally symmetric computa-
tion, equating the local heat transport by a confined state
of mean wave number k,, with that by an extended state
of that wave number. However, this solution is not feasi-
ble, because the values of k,, measured for the confined
states in this paper are too high: their (Rayleigh-number,
wave-number) coordinates lie far outside the Eckhaus
boundary for extended states of TW’s, and the heat-
transport model accordingly predicts no convective heat
transport for such states. In order to obtain a physically
reasonable number for the convective heat transport, I
modified the numerical model to compute the heat trans-
port by the extended state whose wave number is approx-
imately equal to the mean of k, and the saddle-node
wave number k;. The uncertainty introduced by this ap-
proximation is estimated to be +(2.6-3.5)X107%, de-
pending on 3. The heat-transport model also depends on
the saddle-node Rayleigh number r; listed in Table I, but
this dependence is so weak that is has not been necessary
to measure 7, with a precision much better than 0.001.

In addition to the enhanced uncertainty of the
Rayleigh-number calculation, confined-state measure-
ments suffer from uncertainties due to spatial nonunifor-
mities in the apparatus which would be averaged away
quite effectively in an extended TW state. The confined-
state measurements in this paper were all performed in a
particularly uniform section of the cell; the spatial varia-
tion of the Rayleigh number in this section was found
from pulse-drift measurements at ¥=—0.127 to be
8r =+3.5X107% To account for the spatial averaging
that is undoubtedly felt by wide confined states, I have es-
timated the uncertainty due to spatial nonuniformity as
8r(w,/Lcs)'’?, where w,=5.5 is the width of the TW
pulse used to measure that spatial Rayleigh-number
profile and L g is the total extent of the cell traversed by
the confined state under study during a given measure-
ment. This spatial averaging reduces the additional
Rayleigh-number  uncertainty to as little as
+(1.2-1.5)X 10™* for confined states which traverse a
very wide section of the experimental cell.

Finally, the absolute uncertainty of the Rayleigh num-
bers quoted in this paper is estimated to be +2% [22].
However, since the ethanol concentrations used in this
work all lie in a rather narrow range, I would expect that
the relative uncertainty of Rayleigh numbers measured at
different separation ratios would be quite a bit less than
this rather high absolute uncertainty. In Ref. [22], I
found that Rayleigh numbers measured at identical ap-
plied temperature differences with separately prepared
experimental fluids of nominally identical concentration
differed by $0.003. These differences were attributed to
the accuracy with which the ethanol concentration could
be reproduced when preparing a new fluid. This number
also coincides with the maximum drift correction applied
in the present work and thus represents a lower bound
for the relative uncertainty of Rayleigh numbers mea-
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sured at different separation ratios.

In light of these remarks, the Rayleigh numbers quoted
in this paper are subject to a hierarchy of uncertainties:

(i) Comparisons between different extended states ob-
served at the same separation ratio suffer from relative
uncertainties of (1.4-2.1)X 107%, as in Ref. [22].

(i) Comparisons between confined states of different
widths at the same separation ratio exhibit relative uncer-
tainties of (2.6-5)X 107*. The error bars in the figures
below all fall into this range.

(iii) Comparisons between measurements at different
separation ratios exhibit relative uncertainties of about
+0.003.

(iv) The absolute uncertainty of the Rayleigh numbers
quoted in this paper is of the order +2%.

III. MODELING AND CONTROLLING
CONFINED-STATE DYNAMICS

Confined states tend to expand in space when the Ray-
leigh number r is increased and to shrink when r is de-
creased. The time scale of this evolution and the
Rayleigh-number range over which this observation is
valid depend on the confined-state width w and the sepa-
ration ratio ¥. This qualitative picture is mirrored in the
simple model of confined-state dynamics given in Eq. (1)
above. This equation has proven to be an accurate
description of most of the observations presented in this
paper and has allowed for the experimental control of
previously unstudied unstable confined states. Most of
the experiments in this paper consist of measuring the
confined-state expansion velocity Av =dw /dt as a func-
tion of Rayleigh number and width. Most of the data
analysis consists of fitting such measurements to Eq. (1)
so as to deduce the dependences of r,(w) and 7,(w) on w
and ¥.

The simplest application of Eq. (1) to data analysis is to
make measurements of the Rayleigh-number dependence
of Av for a narrow range of widths near some mean width
w. If this range of widths is sufficiently narrow, it turns
out that the width dependence of 7, is unimportant and
that r,(w) is well approximated by a linear function of w.
Thus fitting the measurements of Av(r,w) to a bilinear
form

Av=ar +B(w—w)—5 (2)

by adjusting the parameters a, 5, and 8, I obtain
T,=1/a, r,(w=w)=8/a, and dr,/dw =—f/a. This is
the basic idea of the analysis used in this paper.

Two extensions of this fit procedure are used in some
of the analysis in this work. In Sec. V below, the mea-
surements of Av are made over quite a wide range of r
and it turns out that they deviate very slightly from a
linear dependence on r. To account for this, parabolic
and cubic terms in r are added to the fit of Eq. (2). The
linear model of Eq. (1) is accurate only for small values of
r —r,(w). In Sec. VI below, measurements are made over
a narrow range of » —r,(w), but over a range of w that is
so wide that the width dependence of 7,(w) must be tak-
en into account, and the assumption that r,(w) is linear
in w cannot be made (see Fig. 15 below). I started the
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analysis in this case by parametrizing 7,(w) as a linear
function of w. Rather than assume a particular form for
the width dependence of r,(w), I used a spline fit to ex-
tract r,(w) as well as the parameters describing 7,(w).
The details of this fit procedure are given in Sec. VI.

The stability properties of Eq. (1) are crucial in under-
standing and controlling confined-state evolution. Sup-
pose that w(¢)=w, is the time-independent solution of
Eq. (1) for a given Rayleigh number r. Expanding about
this solution gives

ddw _ dr,

eow -1
dt To dw

where dw =w (¢)—w, is the deviation from the steady-
state width. Confined states for which the dimensionless
growth rate y=—7, |(dr,/dw)<0 are dynamically
stable. For small negative ¥, such states relax slowly to-
wards the steady-state width. Fits to Eq. (1) describe
such dynamics with quantitative accuracy, even if the
steady-state width is not reached experimentally. How-
ever, in Sec. IV below, I describe wide confined states for
which v is strongly positive. These dynamically unstable
confined states either grow to fill the entire cell with
TW’s or else they shrink in width, evolving into narrow
pulses (for which ¥ <0). This unstable evolution is so fast
that meaningful observations cannot be made in uncon-
trolled experiments. In order to maintain these struc-
tures in a time-independent state, it has been necessary to
use active servo control based on Eq. (1). The scheme of
this control is quite simple. Beginning with an estimate
for 7,(w), a measurement of Av is made at a particular
Rayleigh number. The observation that a confined state
of width w exhibits an expansion velocity Av at Rayleigh
number r implies that the neutral Rayleigh number at
this width is r,(w)=r —71,Av, according to Eq. (1).
Changing r to this value should cause Av to vanish. Ap-
plying this measurement-and-correction sequence repeat-
edly should keep the confined-state width constant.

These ideas have been implemented in an experimental
servo control program which stabilizes the pulse width at
any desired value w, and provides estimates of the neutral
Rayleigh number r,(w,). For this purpose, the flow-
visualization computer acquires shadowgraph data re-
peatedly, computes the spatial TW amplitude profile in
real time, locates the 50%-amplitude points in this
profile, and produces an analog signal proportional to
their difference w. The computer which controls the
Rayleigh number digitizes this signal, forming a time
series. At successive times separated by 67z =1200-1800
sec, the latest segment of this time series is fit to a
straight line, yielding estimates for the expansion velocity
Av and for the average pulse width w,,. Then, the Ray-
leigh number r is changed to r —7,[Av +(w,—w,)/8t],
where w,=w,, +Av87/2 is the width at the end of the
latest time segment. This adjustment corrects both for
the nonzero expansion velocity Av and for the width er-
ror wy—w,. The program also records the values of r,
Av, and w,, for each time period, to allow later computa-
tion of r,(w,,)=r —7,Av. Because Av is kept small, the
accuracy of this estimate is insensitive to the uncertainty

Sw+ .-, (3)
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in 7,.

Experimentally, it is found that this servo has a tenden-
cy to ring when applied to the strongly unstable confined
states studied in Sec. IV below. Part of this ringing was
initially due to misadjustment of the overall servo gain
(i.e., to the inaccuracy in the measured value of 7,).
However, much of the reason for the ringing appears to
be because the system actually has inertia in this dynami-
cal state, i.e., a second-derivative term is missing from
Eq. (1). Adding a term proportional to dw /dt? to the
Rayleigh-number correction reduced the ringing substan-
tially. With this control, accurate measurements of the
spatiotemporal structure of strongly unstable confined
states has been possible.

While the width-control servo has been crucial in mak-
ing steady-state observations of unstable confined states,
it has also been quite useful for studying stable confined
states as well. This is because the control program pro-
duces direct measurements of r,(w) which do not require
accurate knowledge of 7,(w). Servo-controlled measure-
ments of r,(w) were used to supplement the fits based on
Eq. (2) above for some of the stable-confined-state mea-
surements described below. The model of Eq. (1) has
been found to quantitatively describe the evolution of all
the wide, stable confined states encountered in this work.

IV. STABLE AND UNSTABLE PULSES
¥=—0.127

Measurements of the spatiotemporal structure of nar-
row TW pulses over the separation-ratio range
—0.123<3% < —0.030 have been published by several
research groups [9-11]. In Ref. [10], I additionally mea-
sured pulse drift for —0.123 <¢< —0.072. Pulses drift
slowly through a sufficiently uniform cell at a velocity vy,
whose dependence on Rayleigh number could be accu-
rately fit to a functional form v, =vy+a(r —ry)!’?
(pulses are not observed for Rayleigh numbers below a
threshold r, which is greater than r,). The structure and
drift of narrow pulses studied at ¥=—0.127 in the
present experiments conform precisely to this picture.
With fit coefficients vy=—0.040(10), a=0.687(35), and
ro=1.2677(20), this function matches the pulse-drift data
shown in Fig. 1(a) to within v =7X10™* rms. Figure
1(b) shows that the TW phase velocity decreases with
Rayleigh number; the typical value v, ~0.75 can be
compared with phase velocity 2.4967 exhibited by linear
TW?’s exactly at onset.

The range of Rayleigh numbers over which pulses are
stable has also been the subject of extensive experimental
study. To set the stage for the present measurements, it
will be useful to give a brief survey of this subject here. A
detailed discussion is deferred until Sec. IX below. Pulses
lose stability and decay when r is reduced below a -
dependent threshold denoted r, [25]. Increasing r also
causes pulses to lose stability, this time by growing in
space and filling the cell with TW’s. The mechanism
which causes this destabilization and the Rayleigh num-
ber at which it occurs depend sensitively on the separa-
tion ratio and on the conditions of the experiment
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FIG. 1. (a) The drift velocity vy, and (b) the phase velocity
vpy are shown as functions of the reduced Rayleigh number r
for stable pulses of width 5.0-6.2 at separation ratio
¥=—0.127. The Rayleigh-number dependence of the pulse
width can be seen in Fig. 5 below. The solid curve in (a) is a fit
to the square-root form given in the text; the rms residual of this
fit is 8u =7X107% The error bars in this graph are smaller
than the symbols. The solid curve in (b) is a guide to the eye.
The error bars here are due to the spatial variation of the phase
velocity over the width of the pulse.

[10,13-15]. For experiments with ¥R —0.14, the
Rayleigh-number range of pulse existence extends above
the onset of convection, where small-amplitude TW fluc-
tuations are convectively amplified. In very long cells,
these fluctuations can grow to such high amplitudes that
they destroy TW pulses, causing a transition to a cell full
of TW’s [13]. This is the normal mechanism of pulse de-
stabilization in long cells and small l¢|. However, it is al-
ways possible to suppress such fluctuations and reveal
other mechanisms of pulse destabilization. In the experi-
ments at YR —0.06 in Ref. [15], fluctuation suppression
was accomplished by using rectangular cells that were
too short for fluctuations to grow to appreciable ampli-
tude. In those experiments, pulse destabilization was
caused by the transition from a convective to an absolute
instability, at a threshold denoted r,. In experiments in a
very long annular cell at ¥=—0.072, extra pulses were
used to absorb TW fluctuations [10]. In that case, the
convective-absolute transition was preceded at r, <r, by
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a process that I called “intrinsic destabilization”: the
pulse simply expanded in space, accompanied by a large
decrease in the TW phase velocity. This process was il-
lustrated for ¥y=—0.072 in Fig. 20 of Ref. [10], in which
a pulse underwent destabilization as it drifted through a
region of elevated Rayleigh number in a slightly inhomo-
geneous cell. The pulses which absorbed TW fluctuations
in that experiment were placed at regions in the cell
where r <r,, so that they remained stable.

The intrinsic destabilization events documented in Ref.
[10] were transients observed in an inhomogeneous sys-
tem in the presence of other pulses. Figures 2 and 3 show
analogous events in successively closer approximations to
the destabilization of an isolated pulse in a uniform sys-
tem. In Fig. 2, two pulses lose stability simultaneously
after the Rayleigh number is increased from r=1.31277
to 1.31406. Both pulses expand and suffer a large de-
crease in phase velocity. Subsequent decreases in the
Rayleigh number far below the convective onset, detailed
in the figure caption, did not arrest this evolution, and an
extended state of TW’s was the final result. Interestingly,
the trailing edges of both pulses were essentially station-
ary during the destabilization process and the leading
edges advanced at the phase velocity of the underlying
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FIG. 2. Space-time plot showing the evolution of a pair of
TW pulses at = —0.127 which lose stability above threshold
r=1.3132(6). At time =0 in this run, the Rayleigh number
was increased from r =1.31277 to 1.31406. In response, both
pulses began to expand in space, accompanied by a decrease in
the TW phase velocity. Subsequent reductions of the Rayleigh
number to » =1.31147 at time ¢ =14 240 sec and to r =1.299 90
at t =17 760 sec did not arrest this process. The expansion of
the TW pulses caused the cell to be filled with 42 pairs of rolls,
which were then transformed into a right-going, 39-roll-pair
state by further reducing the Rayleigh number to r =1.244 72 at
about t =29 280 sec.
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TW. The intrinsic-destabilization threshold in this sys-
tem is measured to be r; =1.3132(6). I have not located
the lower stability threshold r, in these experiments, but
the measurements in Ref. [10] imply r, =1.2692(4).

Since r, >r,,=1.29133(36), TW fluctuations are con-
vectively amplified in this system. Because the experi-
mental cell is so long, some way to absorb these fluctua-
tions must be provided if intrinsic destabilization is to be
observed. The obvious way to accomplish this is to use a
second pulse, as in Fig. 2. However, once one pulse of a
pair has been destabilized and the Rayleigh number has
been reduced below onset, TW fluctuations are no longer
amplified and the second pulse can be removed. This is
what is done in Fig. 3. At the beginning of this run, a
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FIG. 3. This space-time plot shows the production of an iso-
lated “unstable pulse” at Y= —0.127. The run began with two
narrow pulses; at time t=0, a strong Rayleigh-number gradient
was applied, causing the pulse on the right to lose stability and
expand without destabilizing the pulse on the left. After
t=8000 sec, when the TW phase velocity had decreased and the
pulse width had expanded, the applied temperature difference
was reduced, causing the left-hand pulse to decay. The
Rayleigh-number gradient was then removed and the Rayleigh
number was subsequently adjusted in the range 1.292-1.295 so
as to limit the spatial growth or shrinkage of the remaining un-
stable pulse.
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well-developed pulse existed at location 130°, and a
second pulse was created at location 320° by launching a
disturbance from location 90°. The uniformity of the
heating of the bottom plate of the cell was then adjusted
so that local Rayleigh number in the vicinity of the
right-hand pulse exceeded the threshold r; while that
near the left-hand pulse remained below r;. Because of
this strong gradient, the right-hand pulse lost stability
and grew in width, while the left-hand pulse remained too
weak to grow, but not too weak to absorb TW fluctua-
tions. After the TW phase velocity and width of the
right-hand pulse had been clearly destabilized—near
time t=8000 sec—the applied temperature difference
was reduced in order to eliminate the pulse on the left.
Then, near time ¢t =14 000 sec, the Rayleigh-number gra-
dient was removed, leaving an isolated, “intrinsically des-
tabilized” pulse in a spatially uniform system. Notice
that this structure differs from those produced in Fig. 2.
Here both the leading and trailing edges drift in the same
direction as the underlying TW, but at a much slower ve-
locity. I will return to the destabilized structures in Fig.
2 in Sec. VIII below.

The drifting, destabilized pulse in Fig. 3 is actually
strongly unstable and quite difficult to control. After
time ¢ =15 000 sec in the run of Fig. 3, frequent manual
adjustments of the Rayleigh number in the range
1.292-1.295 were required to prevent the pulse from ei-
ther expanding to fill the system or contracting back into
a stable, narrow pulse. In order to maintain these struc-
tures in a steady state, it has been necessary to use the ac-
tive servo control described in Sec. III above. Figure 4
shows the performance of an early version of this pulse-
width control. The top graph shows the space-time tra-
jectories of the leading and trailing edges of the pulse and
the bottom graph shows the Rayleigh number applied by
the servo in response to the measured amplitude profile.
The tendency of this servo to ring that was mentioned in
Sec. III is obvious in the growing oscillations in Rayleigh
number. In the run of Fig. 4, the servo parameters had
not yet been adjusted to minimize this ringing. Interest-
ingly, it is the trailing edge of the pulse profile which
responds strongly to the oscillations in the Rayleigh num-
ber.

It has been possible to adjust the parameters of the
pulse-width servo program to substantially reduce its
ringing from the level shown in Fig. 4. This has been
more successful at shorter pulse widths than at longer
ones. The standard deviation of the servo-controlled
pulse-width variations increases monotonically with
width, quadrupling as w increases from 10 to 30, and this
is largely due to increased ringing for w R 17. The square
symbols in Fig. 5 show the dependence of the neutral
Rayleigh number 7,(w) on pulse width. In order to
reduce data scatter due to the ringing of the servo, data
points with excessive values of dw /dt and d*w /dt? have
been removed from this graph. The solid curve running
through these data points is a fit to the form
r.(w)=r,+r,w~% A least-squares optimization yield-
ed best-fit coefficients r, =1.28843, r,=1.050, and
a=1.808. The rms deviation of the data points from the
best-fit curve is 8 =8X 107*, still substantially larger
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FIG. 4. Behavior of a misadjusted pulse-width servo control.
The top graph shows the trajectories of the leading and trailing
edges of the pulse amplitude profile, as computed by real-time
demodulation of the shadowgraph signal. The underlying TW’s
travel downward in this representation; i.e., the top curve
represents the trailing edge and the bottom curve represents the
leading edge. The bottom graph shows the Rayleigh number as
controlled by the servo program in response to the pulse width
measured in the top graph. The servo has been incorrectly ad-
justed, so that the Rayleigh-number signal exhibits slow, grow-
ing oscillations. The velocity of trailing edge of the pulse oscil-
lates in response. The sensitivity of the leading edge of the pulse
to the Rayleigh-number oscillations is much weaker.
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FIG. 5. The neutral Rayleigh number r,(w) is plotted for
stable and unstable pulses at = —0.127. The square symbols
are the results of servo control of isolated, unstable, wide pulses.
The curve through these symbols is a power-law fit using the
form given in the text. The solid circles are conventional mea-
surements of the widths of stable, narrow pulses at various Ray-
leigh numbers, using multiple pulses for fluctuation suppression.
These narrow pulses grow unstable above r; =1.3132(6). No
data have been obtained for pulse widths between w=6 and 10;
in that range, single pulses are destroyed by convectively
amplified TW fluctuations.
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than the spatial Rayleigh-number nonuniformity. The
reader may perceive some vertical bands of points in the
scatter of the data about the fitted curve. This structure
is an artifact due to residual ringing in the servo control,
which causes the Rayleigh number to oscillate while
maintaining a reasonably constant width. There is no
evidence that r,(w) is less smooth than the fitted curve.
Even with optimized servo control and high spatial uni-
formity, these confined states are quite difficult to con-
trol.

Despite the scatter in the pulse-width-servo data, Fig.
5 clearly shows that the neutral Rayleigh number r,(w) is
a decreasing function of width above w=11. Because
dr,/dw <0, these confined states are dynamically unsta-
ble. This is the fundamental reason for which these “un-
stable pulses” are so difficult to control. For comparison
with this behavior I have plotted as solid circles in Fig. 5
the widths of narrow pulses measured at various Ray-
leigh numbers. The top point represents the widest such
pulse observed in these experiments. The nearly vertical
curve which passes through these data points demon-
strates that narrow pulses are strongly stable. The
language of stability is a natural way to express the insen-
sitivity of the structure of these ubiquitous ‘‘stable
pulses” to experimental parameters.

Notice that there are no data points in the range
6 <w <11 in Fig. 5. This is not because unstable pulses
do not exist in this range, but rather because single pulses
in this range of widths are destroyed by TW fluctuations.
Attempting to reduce the pulse width from above to
below 11 requires increasing the Rayleigh number into a
range where such fluctuations no longer have insufficient
gain to be seen. The convective amplification and the in-
creased size of the quiescent part of the cell conspire to
produce fluctuations strong enough to destroy isolated
unstable pulses of widths less than 11. Of course, this
could have been prevented by adding a second pulse for
fluctuation suppression—this is what was done to obtain
the data for the narrow pulses in this figure—but I have
chosen only to study isolated unstable pulses in these ex-
periments.

Figure 5 demonstrates one of the most important re-
sults of this work. At ¥y=—0.127, it is possible to create
a pulse with any width larger than about 5 times the
height of the cell. Wide and narrow pulses are members
of the same family of confined states; it is the stability of
this state that depends on width. The set of pulse widths
is discrete: the equation r =r,(w) describes a set of mea-
sure zero—a curve—in the (7,w) plane. This observa-
tion is in accord with the CGLE model discussed in Ref.
[6].

The servo control of unstable pulses has been more
than adequate to allow steady-state measurements of
their spatiotemporal structure for a wide range of widths.
These measurements are summarized in Figs. 6—8. The
solid circles and full curves in Figs. 6(a) and 6(b) show
their drift and phase velocities, respectively. For com-
parison, the squares and dashed curves repeat the results
for stable pulses given in Fig. 1. The unstable-pulse drift
velocity is comparable with that of stable pulses, exhibit-
ing a weaker increase with Rayleigh number. The phase
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velocity of the TW in the unstable pulses is much slower
than that in the stable pulses and it increases rather than
decreases with Rayleigh number. I believe that this
behavior is unique among all TW states.

Figures 7 and 8 show the demodulated amplitude and
wave-number profiles for two ranges of widths. In these
and subsequent profiles, a careful method of shifting and
averaging was used. At each time step in a data file, spa-
tial demodulation at the measured mean wave number
was performed, using very wide spatial bandwidth to
avoid distortion. The spatial coordinates at each time
step were shifted and scaled so that the 50% points of the
trailing and leading edges of the amplitude profile were
located at positions 0 and 1, respectively, and the pulse
width w for that time step was recorded. The rescaling
derived from the amplitude profile was also applied to the
wave-number and temporal-frequency profiles. Finally,
the shifted and scaled data for all the time steps were
binned together in space and averaged, and the abscissas
were multiplied by the average width to recover the
correct spatial scale. This method allows all measure-
ments of the structure of drifting pulses with slightly
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plotted as functions of reduced Rayleigh number for stable (cir-
cles, dashed curves) and unstable (squares, full curves) pulses at
%= —0.127. The unstable-pulse data in these graphs were
determined from measurements at servo-controlled pulse
widths; the Rayleigh numbers corresponding to these widths
were taken from the power-law fit to ,(w) in Fig. 5. Error bars
are shown when larger than the symbol size.
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FIG. 7. The top and bottom graphs show the spatial profiles
of the amplitude and wave number, respectively, for a series of
wide unstable pulses at y=—0.127. The full width at half max-
imum (FWHM) pulse widths and average servo-controlled re-
duced Rayleigh numbers are w=11.08(29) and r=1.3020,
w=13.4721) and r=1.2980, w=17.2123) and r=1.2946,
w=21.13(28) and r=1.2927, w=24.26(29) and r=1.2917, and
w=27.78(31) and r=1.2910. In this and subsequent figures
showing spatial profiles, the underlying TW’s propagate to the
right, so that the trailing (upstream) edge is on the left and the
leading (downstream) edge is on the right. Note the double
minima in the low-amplitude region just ahead of the leading
edge in each amplitude profile: these are phase defects.

varying widths to be shifted together and averaged
without distortion.

Figure 7 shows the amplitude and wave-number
profiles for steady-state unstable pulses of widths 11 to
28. As detailed in the figure caption, servo control of
successively wider pulses was accomplished at decreasing
Rayleigh numbers. The structure of the amplitude
profiles is identical behind (i.e., to the left of) a point ap-
proximately 7d downstream from the trailing (i.e., left-
hand) edge and the structure in the neighborhood of the
leading (i.e., right-hand) edge is also quite similar for all
the pulses. With increasing pulse width, the center part of
the amplitude profile is simply stretched out to fill the
space in between. The five widest pulses in this series also
exhibit nearly identical wave-number profiles behind a
point approximately 4d downstream from the trailing
edge; once again, the leading-edge structure is also identi-
cal in all pulses and the rest of the profile just interpolates
between the two edges. These unstable pulses all exhibit
a pair of phase defects just ahead of the leading edge—
this is visible as two minima in the low-amplitude regions
just ahead of the leading edges of each amplitude profile.
The corresponding singularities in the wave-number
profiles have been cut out of the graph for clarity. The
observation that the spatial structures of confined states
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FIG. 8. The top and bottom graphs show the spatial profiles
of the amplitude and wave number, respectively, for the two
narrowest unstable pulses in Fig. 7 [widths 11.08(29) and
13.47(21)] and for the widest stable pulse observed at
¥=—0.127 (width 6.18 FWHM, reduced Rayleigh number
1.312 88). For clarity, the profiles of the narrow pulse have been
shifted slightly to the right, and the stable and unstable profiles

have been marked s and u, respectively.

of all widths consist of nominally identical edge struc-
tures connected by central regions of varying widths has
also been made in the numerical work of Ref. [19].

Figure 8 shows a closer comparison of the two nar-
rowest profiles in Fig. 7 with the structure of the widest
stable pulse observed in these experiments. In common
with the structure of TW pulses at ¥y=—0.072 [10], the
stable pulse does not exhibit the leading-edge phase de-
fect seen in the unstable pulses; rather its wave number
drops at the leading edge and its amplitude profile exhib-
its a smooth, weak, leading-edge shoulder. The trailing
edge of the amplitude profile of the stable pulse also ap-
pears sharper than that of the unstable pulses. These mi-
croscopic structural differences may reflect the reasons
for the differences in the stability of wide and narrow
confined states. Broadly speaking, however, all pulses ex-
hibit similar structure: a leading-edge amplitude shoul-
der and a wave-number profile which decreases sharply at
the trailing edge and more gently in the main body of the
pulse. The pulse structure changes continuously as the
width is increased. This general description applies to all
defect-free confined states.

V. STABLE CONFINED STATES
$=—0.253

The results of the preceding section partially answered
the first two of the open questions posed in the Introduc-
tion: whether both wide and narrow confined states exist
at a given separation ratio and what the relationship is
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between them. Now I turn to the third question: the na-
ture of the locking band and of the lack of drift observed
for arbitrary-width confined states at = —0.25. In this
section, I address the basic issues of drift, locking, and
stability for a narrow range of confined-state widths at
1= —0.253, and I present measurements of the structure
of wide confined states. A fuller exploration of the stabil-
ity of confined states over a wide range of widths at other
values of ¢ is deferred until Secs. VI and VII.

Figure 9 shows the space-time paths of the roll boun-
daries for a confined state of width 21.059(29) at
= —0.253. The TW’s in this state propagate to the left
at velocity v, =1.480, while the amplitude profile drifts
in the opposite direction at a much lower velocity
vg, = —0.0237. Contrary to the observations made in a
cell of much worse uniformity in Ref. [2], all confined
states observed in this work drift continuously. I have al-
lowed confined states like this one to drift around the cell
for weeks, taking approximately 60 h (40007,) for a
round-trip. The lack of drift observed in Ref. [2] was ap-
parently an experimental artifact.

Quantitative measurements of the drift and the spatial
growth of wide confined states are presented in Figs. 10
and 11. To produce each data point in these graphs, a
confined state was allowed to equilibrate for several hours
at constant Rayleigh number and then a series of flow-
visualization images was recorded over the next several
hours. I did not wait for spatial expansion or shrinkage
to disappear; rather, one point of these experiments is to
test the applicability of Eq. (1) for arbitrary expansion ve-
locity. The leading- and trailing-edge positions were
determined from demodulated TW amplitude profiles,

and differentiating in time yielded the front velocities v,
and v, and the expansion velocity Av. The dependence of
these three velocities on Rayleigh number is shown in
Fig. 10. It is difficult to identify clear trends with Ray-
leigh number in the trailing- and leading-edge velocities
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FIG. 9. This space-time plot shows the drift of a wide
confined state at = —0.253. The width of this state was servo
controlled at 21.059(29) to match that of one of the unstable
pulses in Fig. 7. The average Rayleigh number during this run

was r=1.3402.
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plotted in Figs. 10(a) and 10(b), and their difference, the
drift velocity, also exhibits scatter; see Fig. 11(a). This
scatter is associated with the nonzero expansion velocity
in most of these data; see Fig. 10(c). Eliminating this
effect by servo controlling the confined-state width has al-
lowed a more precise measurement of the drift velocity.
This is presented for ¥=—0.210 and —0.167 in Secs. VI
and VIIL

The confined-state expansion velocity plotted in Fig.
10(c) increases with Rayleigh number, with a slope of
about 3. The data exhibit substantial scatter; a fit to a cu-
bic polynomial in r matches the data only to within
8Av=0.0033 rms. It might be thought at first that the
slight flattening of the trend of the data seen in the range
1.335 57 $1.340 represents a locking band obscured by
the scatter. However, both of these features are caused in
fact not by locking but by the dependence of the expan-
sion of the confined state on its width. As described
above in Sec. III, I extracted this dependence by fitting
the data points Av(r,w) to the sum of a cubic in  and a
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FIG. 10. (a) The trailing-edge, (b) leading-edge, and (c) ex-
pansion velocities are plotted as functions of reduced Rayleigh
number for confined states at Y= —0.253. Error bars are shown
when larger than the symbol size.
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FIG. 11. (a) The drift velocity and (b) the width-corrected ex-
pansion velocity for the data of Fig. 10 are plotted as functions
of the Rayleigh number. The average drift velocity is
—0.0205(34). The width correction has revealed the expansion
velocity at =10 to be a smooth function of Rayleigh number,
with no “locking band.” A single data point w width w=25.5
has been excluded from this graph; see the text and Fig. 12.

linear function B(w — i ), where =10 is the average ex-
perimental width. Using the fit parameter 3, the width
dependence of Av(r,w) can be removed by computing
Av(r)=Av(r,w)—B(w —w) for each data point. This
width-corrected expansion velocity is plotted vs Rayleigh
number in Fig. 11(b). The error bars in this graph are
somewhat larger than those in Fig. 10(c) because the
confined-state width w is not constant in time during
most of the measurements; this introduces uncertainly in
the width correction B(w —iv). Nonetheless, the width
correction has reduced the scatter in the data to 0.0015
rms and has revealed a smooth dependence of A7 on r.
The fitted function of 7 passes through the horizontal axis
with slope 7, !=3.27(20) at an intercept r, =1.336 48(23).
r, is the unique value at which a confined state of width o
neither grows nor shrinks. To within this very high pre-
cision, there is no locking band.

As in the previous discussion of confined states at

= —0.127, it is useful to recast these results in terms of
stability. Figure 12 shows a graph of the neutral Ray-
leigh number r,(w)=r —7,Av as a function of w. The fit
in the preceding paragraph corresponds to fitting the
data for w<20 with a straight line; the fitted slope is
dr,/dw =4.8(3)X10™%. Because of the apparent break
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FIG. 12. The neutral Rayleigh number r,(w) is plotted as a
function of pulse width for the = —0.253 data of Figs. 10 and
11. Below the break in slope at w ~ 17, these data are well fit by
a straight line of slope 4.8(3)X 107 % The behavior of the neu-
tral Rayleigh number for w R 17 is documented in more detail in
subsequent experiments at = —0.210 and —0.167. In compar-
ing these results with those in Fig. 5, note that there are no mea-
surements here for pulses of width w <7.

in the slope of r,(w) near w=17, the single point at
w=25.5 was not used in the fit. Because dr,/dw>0,
confined states with w <17 are dynamically stable. Qual-
itative observations of much wider confined states suggest
that dr,/dw remains weakly positive out to at least
w=33. The stability of confined states with w X 7 seen at
this separation ratio stands in contrast to the unstable
confined states seen for the same range of widths in Fig.
5.

Figure 13 documents the spatiotemporal structure of a
very wide, stable confined state at = —0.253: this state
had time-independent width w=32.72(7). The amplitude
and wave-number profiles shown in the top graph in this
figure are by now quite familiar; in particular, the charac-
teristic rapid decreases in wave number at the leading
and trailing edges, accompanied by a much gentler de-
crease in the main body of the pulse, are characteristic
[20]. The bottom graph of Fig. 13 shows the spatial
structure of the oscillation frequency and the TW phase
velocity. The oscillation frequency is remarkably uni-
form in the main body of the confined state.

Figure 14 shows a comparison between the stable,
1= —0.253 confined state of Fig. 9 and an unstable pulse
of the same width (w=21.1) produced at = —0.127.
The amplitude profile of the unstable pulse at = —0.127
has been multiplied by a scale factor to match the height
of its companion (Fig. 21 below shows the behavior of the
amplitude of confined states of width 21.1 as a function of
¥). Aside from this difference in magnitude, the princi-
pal difference between these amplitude profiles lies in the
structure of the leading edge: the stable confined state
lacks the amplitude nulls seen in the leading edge of the
unstable pulse. The wave-number gradient is seen to be
greater in the main body of the unstable pulse than that
in the stable confined state. Once again, the stable struc-
ture exhibits a sharp drop in its wave number at the lead-
ing edge, with no sign of the phase defects seen in the
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FIG. 13. Spatiotemporal structure of a confined state of
width 32.72(7) at y= —0.253. The Rayleigh number is 1.340 57.
The top graph shows the amplitude and wave-number profiles.
The bottom graph shows the demodulated temporal-frequency
profile and the phase-velocity profile; the latter is the ratio of
the former and the wave-number profile.

leading edge of the unstable pulse.

The main results of this section are that wide confined
states at ¥y= —0.253 drift continuously, are stable, exhibit
a spatiotemporal structure that fits into the trends noted

AMPLITUDE

WAVE NUMBER

DISTANCE FROM TRAILING EDGE, x/d

FIG. 14. Comparison of the structures of a stable confined
state at Y= —0.253 [solid curves; width 21.059(29)] with an un-
stable state of the same width at = —0.127 [dashed curves;
width 21.13(28)].
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at ¥=—0.127, and do not exhibit the previously ob-
served locking band.

VL. STABLE CONFINED STATES
¥=—0210

The experiments described in the preceding section ex-
plored the spatial growth and stability of stable confined
states in a rather narrow range of widths. The analysis
showed that a minor modification of Egs. (1) and (2) accu-
rately modeled the very slightly nonlinear Rayleigh-
number dependence of the expansion velocity Av over a
wide range of Av. The experiments presented in this sec-
tion are meant to be complementary: their purpose is to
measure the width dependences of the characteristic time
7,(w) and the neutral Rayleigh number r,(w) over a wide
range of w, with less attention paid to producing and ex-
plaining large expansion velocities.

The experiments at ¥y=—0.210 began with measure-
ments of the expansion velocity Av as a function of Ray-
leigh number and confined-state width, as in Fig. 10.
These measurements covered widths in the range
7S w $27. The initial analysis of these data proceeded as
described in Sec. III: I parametrized the width depen-
dence of 7, as 7,=7,, +B,w, where 7,, and B are adjust-
able parameters. For each measurement of Av(r,w), I
computed the expansion-corrected neutral Rayleigh num-
ber r,=r —7,Av as previously, eliminating a few points
for which Av was so large that w exhibited excessive un-
certainty. These data for r,(w) were then fit to a heavily
smoothed cubic spline function of w and the fit parame-
ters 7,, and B, were adjusted to minimize the fit error.

The data points in Fig. 15 show the expansion-
corrected neutral Rayleigh number plotted vs w, and the
curve is the smoothed spline fit. The degree of smoothing
in this procedure is somewhat arbitrary, but it is easy to
detect when the smoothing is too strong (the curve be-

1.339

1.338

1.337

r — To(w)Av

1.336 -

1.335

! I L |
5 10 15 20 25

WIDTH w/d

FIG. 15. The symbols represent data for the neutral Rayleigh
number r,(w), corrected for the nonzero expansion velocity Av
using a width-dependent characteristic time 7,(w). The curve is
a smoothed cubic spline fit to these data points. The width
dependence of 7, has been adjusted to minimize the error in the
spline fit. ¥y=—0.210.
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comes too straight and y? grows too large) or too weak
(the curve develops wiggles which decrease y” but are un-
doubtedly unphysical). Averaging the results obtained
for several different degrees of smoothing gave
Too =0.317(5) and B,= —0.0050(3). The rms deviation of
the data from the curve in Fig. 15 is 6r,=5.6X107%,
somewhat larger than the average error bar. The slope of
the curve in the range 10Sw=s15 is dr,/dw
=2.7X107*, about half of that found for ¥y= —0.253.

The principal qualitative result here is that 7, depends
on w. It may be possible to reduce the rms error of the fit
in Fig. 15 by trying a different functional form for this
dependence or by introducing more adjustable parame-
ters, but the lowest-order linear dependence assumed
above has been adequate to demonstrate that this width
dependence does exist. This is made clear in Fig. 16,
where I plot Av as a function of Rayleigh number for sub-
sets of the data for which w is near the two selected
values w=7.0 and w=23.1. In order to reduce the
scatter in the graph caused by the spread of widths in
each subset, the Rayleigh number has been corrected for
width by writing 7=r —r,(w)+r,(iv) for each data
point. The straight lines in Fig. 16 represent the fitted
function Av(F)=[r —r,(w)]/7,(w). These lines clearly
match the data and exhibit noticeably different slopes,
confirming the width dependence of 7,(w).

Figure 17 shows another way to assess the adequacy of
this fit procedure: the scaled expansion velocity 7,(w)Av
is plotted against the Rayleigh-number difference
r —r,(w) for all data points in Fig. 15. A linear fit to
these scaled data has a slope 0.978(26), consistent with
the expected value 1.0, confirming the correctness of Eq.
(1) in explaining these data. The rms deviation of the
scaled data from this linear fit is 8 =3.2X 10™*, compa-

0.015 : : .
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WIDTH-CORRECTED RAYLEIGH NUMBER 7

FIG. 16. The confined-state expansion velocity is plotted as a
function of reduced Rayleigh number for two subsets of the
data at = —0.210. Triangles, average confined-state width
w=17.0(0.4); squares, w=23.1(2.0). Error bars are smaller than
the size of the symbols. To correct for slight differences be-
tween the actual widths w and the average widths i, the Ray-
leigh number r for each data point has been changed to
F=r—r,(w)+r,(i5). The straight lines represent the two-
parameter spline fit to entire data set. The different slopes for
the two subsets plotted here illustrate the substantial depen-
dence of the characteristic time 7, on w.
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rable to the random uncertainties in the raw data. A
better parametrization of 7,(w) would probably not
reduce this error by very much.

Since the quantitative interpretation of the results
presented so far depends on an assumed width depen-
dence for 7,, I have augmented these data with a series of
direct measurements of r,(w) using the width-control ser-
vo described in Sec. III above. Recall that the result of
this procedure is a series of measurements of Av(r,w)
from which I calculate r,(w)=r —7,(w)Av. Under servo
control, the expansion velocity Av is kept so small that
uncertainties in 7,(w) are irrelevant. It is worth noting in
this context that servo control of stable confined states
exhibited no ringing or ““inertia” as was seen with unsta-
ble pulses at Y= —0.127. Servo control of stable confined
states is not necessary for their characterization; it is just
a convenience which allows direct measurement of 7,(w).
For stable confined states, Eq. (1) is a quantitatively accu-
rate description of confined-state expansion and stability.

The square symbols in Fig. 18 show the servo results
for r,(w) at ¢¥=-—0.210, while the dashed curve
represents the spline fit in Fig. 15. This curve clearly lies
inside the error bars, but the data would be even better
described by a curve which is slightly higher than the
spline fit for w < 15 and slightly flatter for w R 20.

Note that the error bars for the servo data at the
lowest widths in Fig. 18, 5 Sw <8, are quite large in com-
parison with those at large w. Stable confined states be-
come quite difficult to control in this regime, and this
seems to be because their width does not quite match that
of a branch of slightly narrower, strongly stable pulses.
Uncontrolled measurements of the width of the latter
pulses are shown as solid circles in Fig. 18. The observa-
tion of this new branch of stable, narrow pulses at
%= —0.210 contains the rest of the answer to the first
two questions posed in the Introduction: a full range of
confined-state widths seems to be possible at least for all
¥ in the range —0.210=¢=—0.127. The Ilower
Rayleigh-number limit of the existence of narrow pulses

WIDTH w/d

FIG. 18. The square symbols represent direct measurements
of the neutral Rayleigh number r,(w) using servo control of
stable, wide confined states at y= —0.210. The dashed curve is
the spline fit derived from the non-servo-controlled data in Fig.
15. The solid circles represent measurements of the width of
narrow pulses made at fixed Rayleigh number without servo
control. For clarity, the errors bars have been deleted from
these data, and a few points which would fall below the bottom
of the graph have been eliminated.

is measured to be r, =1.3265(9) at ¢y = —0.210.

The spatiotemporal structure of narrow pulses at
1=—0.210 is similar to that observed for ¢y —0.13.
The spatial profile of the TW amplitude exhibits the same
leading-edge shoulder, and the wave-number profile ex-
hibits the same strong gradient. Figures 19(a) and 19(b)
show the pulse width w and drift velocity v, plotted in
the usual way as functions of Rayleigh number. The
variation of pulse width with Rayleigh number is some-
what stronger than at less negative ¥, and the range of
existence is somewhat reduced. These comparisons will
be made more explicit in Sec. IX below. The drift veloci-
ty vy increases rapidly with Rayleigh number, as at
smaller |¢|. vy, also exhibits a slight dependence on ex-
pansion velocity, which was not strictly zero for several
of these non-servo-controlled measurements. To reduce
the resulting scatter in the data in Fig. 19(b), I have plot-
ted a corrected drift velocity U4 =v4, —0.795Av. The
(r —rg)!/? dependence seen in previous experiments does
not fit these data as well as at less negative ¥, although a
pronounced downward curvature would still be seen in
any fitted curve.

Measurements of the drift velocity of confined states
over a wide range of widths at ¥y=—0.210 are gathered
together and plotted as a function of width in Fig. 20.
The rapid variation of vy for narrow pulses stands in
strong contrast to the much slower variation observed for
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FIG. 19. (a) The width of narrow pulses observed at

= —0.210 is plotted as a function of reduced Rayleigh number
r. The width increases approximately linearly with r until a
width of about 6 has been reached. At this width, pulses be-
come less stable, as evidenced by the jump in width here and by
the corresponding change in slope in Fig. 18. (b) The pulse drift
velocity is plotted as a function of r. As explained in the text, a
small correction has been made for the nonzero expansion ve-
locity observed in some of the data. Error bars in (b) are small-
er than the symbol size.
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FIG. 20. Drift velocity vs width for stable confined states at
¥=—0.210. As in previous figures, square symbols represent
measurements on servo-controlled confined states, while circles
pertain to uncontrolled narrow pulses. The drift velocity in-
creases rapidly with width for narrow confined states and then
decreases slowly at higher widths. Error bars are smaller than
the symbol size.
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FIG. 21. The spatially averaged TW amplitude f A (x)dx /w
is plotted vs separation ratio for confined states of width
w =21.08+0.11. The square symbols are derived from the am-
plitude profiles A (x) measured during servo control of the
confined-state width. The circular data point is derived from a
non-servo-controlled data set which was subjected .to slightly
different numerical processing. The difference between it and
the corresponding square data point at = —0.210 is an indica-
tion of the reproducibility of these measurements.

servo-controlled wide confined states. Interestingly, the
dependence in Fig. 20 is nonmonotonic. This is also the
case for unstable pulses at y=—0.127; see Fig. 33 below.
Note that wide confined states drift much more slowly at
this separation ratio than at Y= —0.253; compare with
Fig. 11(a). This comparison will also be made more expli-
cit in Sec. IX below.

The TW amplitude and wave-number profiles of wide,
stable confined states at = —0.210 are quite similar to
those shown in Figs. 13 and 14 for = —0.253. Indeed,
except for a vertical scale factor, width-matched ampli-
tude profiles for stable confined states at all ¥ S —0.167
are virtually identical. The spatially averaged TW ampli-
tude for confined states of width 21.1 is shown as a func-
tion of separation ratio in Fig. 21. A smooth dependence
on ¥ is observed. The amplitude of the unstable pulse at
%= —0.127 happens to match this trend, even though
Fig. 14 showed systematic differences between the profiles
of stable and unstable confined states of this width. The
wave-number profiles of stable confined states at w=21.1
at different 1 do not match as exactly as those of the TW
amplitude. However, the variation with ¢ is quite weak
and will not be detailed further here.

VIL. STABLE CONFINED STATES
¥=—0.167

The measurements presented in the preceding section
were repeated in a series of experiments at = —0.167.
The analysis and its results were similar to those present-
ed in the preceding section, so this description will be
brief. As at = —0.210, both stable, wide confined states
and strongly stable narrow pulses are observed. Figure
22 shows the width and drift velocity of narrow pulses as
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FIG. 22. (a) The width and (b) drift velocity of narrow pulses
at = —0.167 are plotted as functions of the reduced Rayleigh
number r. The increasing trends in both these numbers are
similar to those seen for y=—0.210 in Fig. 19.

functions of Rayleigh number r. Once again, the pulse
width varies approximately linearly with 7, and the drift
velocity varies strongly with r, exhibiting a clear down-
ward curvature that does not quite match the square-root
dependence seen at ¥ = —0.127. The limits of stability of
narrow pulses at ¢¥=—0.167 are found to be
r, =1.2975(6) and r, =1.3080(10).

Servo-controlled observations of wide confined states
were also made at this separation ratio. The results of
these experiments are shown in Fig. 23. Both r,(w) and
vg4, are essentially independent of confined-state width for
w R 7. There was enough of a variation of the expansion
velocities Av in this series of experiments that I could ex-
tract estimates for the characteristic time 7,(w) from
linear fits of Av vs r for widths in the range 7R w R 17. 1
found 7,=0.373(21), independent of w over this range of
widths.

No results were obtained in this series of experiments
for confined states with widths greater than w=21. This
is because wide, servo-controlled confined states tend to
develop spatiotemporal defects when the servo program
makes changes in the Rayleigh number. Indeed, the data
point for w=21 in Fig. 23 lost stability in this way after
only about 8 h under servo control. Wide confined states
at this separation ratio seem to be much more susceptible
to the formation of defects than those at the other separa-
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FIG. 23. (a) The neutral Rayleigh number r,(w) and (b) the
drift velocity v4, are plotted as functions of width w for confined
states at = —0.167. As in previous figures, squares are derived
from runs in which the confined-state width was servo con-
trolled, while circular symbols represent uncontrolled measure-
ments. For w X 7, both r, and vy, are essentially independent of
w.

tion ratios studied. However, this susceptibility does not
imply that wide, undefected confined states cannot be
created at Y= —0.167. By making very gentle, manual
changes in the Rayleigh number, I have made wide, un-
defected confined states with slightly nonzero Av. Per-
sistent confined states which exhibit repeated spatiotem-
poral defects are described in the next section.

VIII. NEW CONFINED STATES

The experimental section of this paper began in Sec. IV
with a discussion of the “intrinsic destabilization” pro-
cess by which narrow, stable pulses lose stability at
= —0.127. This process was documented in Fig. 3
above, where a strong Rayleigh-number gradient and a
transient fluctuation-absorbing pulse were used to create
an isolated unstable pulse. However, a wide, drifting,
confined state is not the only outcome of such an experi-
ment; indeed this was already illustrated in Fig. 2. There,
two narrow pulses were allowed to expand above stability
threshold r;, and in that case, their trailing edges
remained approximately stationary, while their leading
edges expanded in space at the velocity of the underlying
slow TW.
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What confined structure would have resulted in the ex-
periment of Fig. 2 if one of the pulses had been removed
and the expansion of the other had been stopped before
the cell filled with TW’s? The answer is presented in Fig.
24. In analogy with Fig. 3 above, the goal of this experi-
ment was to produce an isolated confined state in a uni-
form system. The run in Fig. 24 began with two narrow
pulses in a strong Rayleigh-number gradient, as in Fig. 3.
When the Rayleigh-number profile was made uniform
again at time t=9660 sec, the destabilized pulse looked
very much like the corresponding structure in Fig. 3. In
this run, however, the pulse expansion took place in the
manner illustrated in Fig. 2, with a nearly motionless
trailing edge and a leading edge advancing at the speed of
the underlying TW. The result, at the end of time period
represented in Fig. 24, was a confined state of nearly
motionless rolls in a uniform system. It is worth pointing
out that a run of this type at Y= —0.072 was already de-
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FIG. 24. This space-time plot shows the production of a
wide, unstable state of nearly motionless convective rolls, in
analogy with the experiment illustrated by Fig. 3. At the begin-
ning of this run, a strong Rayleigh-number gradient caused the
pulse on the left to expand, while the weak pulse on the right
remained narrow and absorbed TW fluctuations. At time
t=9660 sec, after the weak pulse disappeared, spatially uniform
heating was restored, at Rayleigh number r =1.30678. This
was reduced to r =1.30017 at time =13 090 sec. At this Ray-
leigh number, the destabilized pulse evolved into a very slowly
expanding state of nearly motionless rolls.
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scribed in Fig. 21 of Ref. [10]. In that experiment, how-
ever, the system also contained other TW pulses, and
these interacted with the confined state of nearly steady
rolls.

I have repeated this kind of experiment several times
and found this state impossible to control. The nominally
motionless rolls have a strong tendency to suddenly start
moving, sometimes reversing directions repeatedly, and
the width of the state is unstable. In the run of Fig. 24,
for example, the state continued to expand slowly, nearly
filling the experimental cell. An attempt to stabilize this
expansion by reducing the Rayleigh number from
1.30017 to 1.28826 at time 61 845 sec was ineffective,
while a further reduction to 1.28429 at time 79 450 sec
caused the confined state to collapse rapidly. This is
shown in Fig. 25. In the present case, I was able to arrest
this collapse in time to form a wide, unstable pulse of the
type discussed above. Usually, however, the unchecked
collapse ends in the production of a narrow, stable pulse.
The possibility of creating stable confined states of
motionless rolls at small separation ratio is considered in
Sec. IX below.

I end the data-presentation part of this paper with a
description of another qualitatively new convective struc-
ture: a weakly unstable, defected confined state. The
discovery of this state came about because of a difference
in the evolution of narrow pulses at ¥=—0.127 and
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FIG. 25. Collapse of the confined state produced in Fig. 24.
Time t=0 in this figure corresponds to time ¢z =77 700 sec in
Fig. 24. 15855 sec before the beginning of the time period in
the present figure, r was reduced to 1.28826 in an attempt to
arrest the expansion of the state in Fig. 24. At time t=1750 sec
in the present figure, r was reduced again to 1.284 29. This pre-
cipitated the collapse of the confined state. Note the roll-pair
annihilation events which accompany this collapse.
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¥ = —0.210. The usual way I produce isolated, narrow
pulses,

f [ T ‘ T
as documented in previous publications 14 : ‘
[10,13,16], is to launch a small-amplitude, localized dis-

turbance which decomposes into two oppositely propaga-
ting wave packets; see Fig. 1 in either article of Ref. [13]

7
i

o

| = -
for an illustration of this initiation process. Local heat- 5 oF \\ ’ § \\§
il’l . 1 d o« o e b I \\ & iN
g is applied to the vicinity of one of these wave packets 2 g \\\ . § XSS
so that its amplitude grows much more strongly than that g | % \\i || &
of the others. As the wave packet grows, linear disper o B \\\ N \
sion causes its spatial width to increase substantially. z \\X\ i i\i H &
When the amplitude of the selected wave packet is so NS ] \\\ 1 §\\§;
large that nonlinear effects become evident, the Rayleigh ) \ i \§ 1 §\\\\\\
number is reduced. This causes the other, weaker wave ‘ \\\\\\\ \ H N\~
packets to decay and the stronger wave packet to shrink ol 1\\\\>§ : x| k\\\\
into a narrow, nonlinear pulse. The spatial growth and | L ' ] ]
subsequent narrowing can be seen at the bottom of Fig. 3 90°  180°  270° 270°  360° 180° 270° 360
above.
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It is this intermediate phase of spatial narrowing that

differs substantially at different values of . For
¥ =< —0.167, a narrow wave packet splits off the leading
edge of the pulse, travels ahead into the region of de-
creased Rayleigh number, and decays. The narrow struc-
ture it leaves behind quickly settles into the shape of a
pulse. This evolution is not very sensitive to the Rayleigh
number; it is very easy to make narrow pulses at
¥ =< —0.167 this way. For ¥=—0.127, however, this in-
termediate phase is much less reproducible. If the Ray-
leigh number is kept too high for too long during this L o o
phase, then the wave packet does not simply shrink into a the same quahtatlve.features, albelt'wnh less regularity in
narrow pulse. Instead, the TW’s at the leading edge grow the timing anc..l loc.atlons (?f t_he spatloter_nporal defects.
in amplitude, their phase velocity decreases relative to ‘As shown in Fig. 27, it is also possible to make very
those upstream at the trailing edge, and spatiotemporal ~ Wide defected confined states. Once again, the expansion
defects form in between. This is a defected confined state. ~ Velocity increases with increasing Rayleigh number, and
At = —0.127, persistent, wide, defected confined states the confined state in Flg. 27(b) has nearly constant width.
are easily made and have been studied in great detail. At The TW’S_ at the le_admg edge of these very Wlde confined
¥=—0.167, it is also possible to make persistent defected states exhibit a notlceal?ly lower phase veloc1ty than those
confined states. They tend to form not during the inter- ~ UPstream, and the spatl?temporal defects which separate
mediate phase of spatial narrowing of nonlinear wave them from the fast TW’s are arrayed much more irregu-
packets, as at = —0.127, but rather when an attempt is

larly in space time.
made to make an undefected confined state grow to
wX19 by increasing the

FIG. 26. Space-time diagrams show the behavior of narrow
defected confined states at ¥y= —0.127 at slightly different Ray-
leigh numbers: (a) r=1.27547, (b) r=1.28044, and (¢
r =1.28489. The middle diagram shows a confined state of
nearly constant width in which roll-pair annihilations occur

periodically in time at a position 4d downstream from the trail-
ing edge.

The leading-edge and trailing-edge velocities have been
measured for defected confined states over a wide range
of Rayleigh numbers and widths. Both velocities are ob-
served to exhibit an approximately bilinear dependence
Figure 26 shows examples of defected confined states at ~ On Width and Rayleigh number. I define the notation for

three different Rayleigh numbers at ¥»=—0.127. It can fits to this dependence as follows:

be seen in this ﬁgure that t.he expan§ion velocity of .these v, =vgy +a, (r—r,)+B(w—),

confined states increases with Rayleigh number; this ob-

servation is made quantitative below. The narrow defect-

ed confined state in Fig. 26(b), whose expansion velocity
is close to zero, consists of three regions of TW’s with
different phase velocities separated by two lines of roll-
pair annihilations or spatiotemporal dislocations. The all the data and r,=1.282 16 is the Rayleigh number at
TW phase velocity is approximately constant in each of  which a confined state of width @ exhibits zero expansion
these three regions, and the velocity decreases as one  velocity. Applied to the expansion velocity Av, Eq. (4) is
moves downstream from one region to the next. The de-  equivalent to Eq. (1) assuming a linear dependence for
fect lines separating the three regions are located at dis-  r,(w); the coefficient a,, is equivalent to the inverse of
tances 4 and 10 (in units of the cell height) downstream  the characteristic time 7,. The first three lines in Table II
from the trailing edge. Interestingly, the formation of de-  contain the results of linear least-squares fits to this form
fects in the line closer to the trailing edge is periodic in
time, with period 7.76(9)7,. The expanding and contract-

for v;, v,, and Av. The fit to the data for Av was per-
formed separately but is of course not independent of the
ing confined states shown in Figs. 26(a) and 26(c) exhibit

other two fits. Notice that ,, is positive. Defected

Rayleigh number. At
¥ =< —0.210, defects are never seen in confined states, ex-
cept as transients.

4)
where the subscript x is / for the leading edge, ¢ for the
trailing edge, and Av for the expansion velocity, which
was separately computed as the time derivative of the
confined-state width. Here =138 is the mean width for
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FIG. 27. Space-time diagrams
of very wide defected confined
states at Rayleigh numbers
r=1.27523 (a), 1.28194 (b), and
1.29116 (c). The TW phase ve-
locity at the leading edge of such
wide confined states is extremely
low.

I 1
90° 180°  270°

POSITION IN CELL

confined states are thus unstable at this separation ratio,
but weakly so, as detailed in Sec. IX below.

Figure 28 shows the Rayleigh-number dependence of
the front and expansion velocities corrected for width by
subtracting off the (w —i) term computed in the fits.
The leading-edge velocity shown in Fig. 28(a) increases
with Rayleigh number with almost the same square-root
dependence seen for the drift velocity of stable pulses at
this value of ¥. In contrast, the trailing-edge velocity de-
creases with r [Fig. 28(b)], so that the drift velocity is
only weakly dependent on Rayleigh number: the total
variation of drift velocity is less than +10% for all the
data. The expansion velocity [Fig. 28(c)] increases with
Rayleigh number with slope a,, =4.10.

The phase velocity v{h of the fast TW’s at the trailing
edge of the defected confined states can be accurately
measured, and its dependence on width is shown in Fig.
29(b). A bilinear fit to the form of Eq. (4) has been ap-
plied to these data—see Table II—but the fit coefficients
are so small that a weighted average of these data is the
best characterization of their behavior: v, =0.903(15).
This is to be computed with the phase velocity 2.4967
measured for linear TW’s at this separation ratio. The
phase velocity v}, measured at the leading edge of these
confined states is much less well defined. As shown in
Table II, the dependence of this velocity on width and
Rayleigh number is not negligible. Figure 29(a) shows
the width dependence, corrected for Rayleigh number by
subtracting off the fitted (r —r,) term. Very long defect-
ed confined states have very slow TW’s at their leading
edges.

TABLE II. Coefficients of bilinear fits to velocities measured
in defected confined states.

Data Uo a B rms error
v, 0.042 40 +2.27 +2.36X107* 0.0025
v, 0.042 16 —1.93 —0.42X107* 0.0017
Av =0 +4.10 +2.59%x10™* 0.0033
Vin 0.8098 —16.9 —0.0116 0.039

_v(& 0.8933 —1.63 —1.6X107* 0.01

Characterizing the structure of defected confined states
is more difficult than in the case of the steady confined
states discussed above, because this structure is not
unique or constant. But there are some repeatable
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FIG. 28. Rayleigh-number dependence of the (a) leading-
edge, (b) trailing-edge, and (c) expansion velocities for defected
confined states at = —0.127. Error bars are smaller than the
symbol size. The fitted width dependence has been subtracted
in each case. The dashed curves in (a) and (b) both represent the
drift velocity of narrow pulses at this separation ratio, copied
from Fig. 1(a).
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FIG. 29. (a) The Rayleigh-number-corrected phase velocity
of the slow TW at the leading edges of defected confined states
at = —0.127 is plotted as a function of confined-state width.
A strong decrease with width is evident. (b) The phase velocity
of the fast TW at the trailing edges of defect confined states is
plotted as a function of width. There is no width or Rayleigh-
number dependence stronger than the error bars.

features to be observed, as seen in Figs. 30 and 31. Fig-
ure 30 shows amplitude and wave-number profiles made
at a sequence of times during the run of Fig. 26(b). This
confined state exhibited nearly zero expansion velocity,
and the first defect downstream from the trailing edge ap-
peared periodically in time, so that a few samples of the
data during one defect cycle are enough to fully charac-
terize the structure. The seven time steps in the
amplitude-profile graph in the top of Fig. 30 start with
the widest profile; as time proceeds, the trailing edge
moves forward and down, resulting in a cusp-shaped de-
fect at the last time step. During this period of time, the
leading edge is hardly affected. In subsequent time steps,
the trailing edge grows back up again. The same time
period begins with the lowest wave-number profile in the
bottom graph of Fig. 30. As time proceeds, the local
wave number increases throughout the main body of the
confined state, culminating in a singular peak at the loca-
tion of the defect (for clarity, the sharply peaked profile
corresponding to the last time step in the amplitude-
profile graph has been deleted from the wave-number
graph in Fig. 30).

Figure 31 shows the amplitude and wave-number
profiles exhibited at one instant by a very wide defected
confined state. These profiles were made very close to a
time at which two phase defects were present. Note that
the wave-number profile exhibits very large wiggles
downstream of the first defect, while wave-number modu-
lations are almost absent downstream of the second de-

wave-number profile correspond to the first time step in this se-
quence, and the time step is 0.6667,, compared with the regular
time delay 7.76(9)r, between successive defects. For clarity, the
strongly peaked wave-number profile at the seventh time step is
not shown.

fect. This leads to the impression that the TW’s pro-
duced by the first defect suffer some kind of convective
modulational instability as they travel downstream; the
growth of this instability culminates in the second phase
defect.

As noted above, defected confined states are also seen
at = —0.167. I have examined these states only enough
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FIG. 31. Amplitude and wave-number profiles exhibited at
one instant by a very wide defected confined state at Rayleigh
number r =1.27920. Two phase defects are present; strongly
modulated TW’s exist in the spatial region between them.
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to verify that this qualitative behavior is the same as
1= —0.127. I have made a single quantitative measure-
ment: at r =1.30675, a defected confined state of width
33.28(20) drifted at vy = —0.026 89(7), expanded with
Av=0.002 94(14), and created defects accurately periodi-
cally in time, with period 5.902(25)7,.

IX. DISCUSSION

The main goal of the experiments described in this pa-
per has been to construct a unified experimental picture
of defect-free confined states of TW convection. This pic-
ture has turned out to be rather simple: there is a
discrete set of such states. This set includes confined
states with all widths greater than about 5 times the cell
height. Their properties vary continuously with experi-
mental parameters. In particular, confined states of all
widths drift at a constant velocity which vanishes only
for a measure-zero set of parameters. A secondary goal
of this work has been to search for qualitatively new
confined states. Two such states have been found; one of
these, the defected confined state, has been characterized
in detail at = —0.127.

In the analysis of the data presented in this paper, it
has been convenient to regard the confined-state width w
and the separation ratio ¥ as the two independent param-
eters needed to describe confined-state behavior. In this
language, Eq. (1) has been proposed as a model of the dy-
namics and stability of confined states. This model has
been found to be quantitatively accurate for wide
confined states at ¥y < —0.167 and for defected confined
states at = —0.127. For the unstable pulses seen at
= —0.127, a second-time-derivative term appears neces-
sary.

The stability and range of existence of confined states
can be described in terms of the neutral Rayleigh number
r,(w). The measurements of this quantity of all confined
states at y=—0.127, —0.167, and —0.210 are plotted to-
gether in Fig. 32. This graph shows explicitly that nar-
row pulses (w < 6) are very strongly stable at = —0.127
and less strongly stable at more negative 3. The domain
of existence of narrow pulses decreases strongly as ¥ is
made more negative than —0.127. Wide confined states
are very weakly stable for ¥ < —0.210 and strongly unsta-
ble at ¥=—0.127. At ¥y=—0.167, confined states with
w R 7 are approximately neutrally stable: r,(w) is nearly
independent of w. Defected confined states at
1= —0.127 (dotted line in Fig. 32) are very weakly unsta-
ble.

The shape of the function r,(w) determines the stabili-
ty of confined states but not the time scale of their dy-
namics. This information is contained in the characteris-
tic time 7,(w). The analysis of the data for y=—0.210
revealed that 7,(w) is smaller for very wide, defect-free
confined states than for narrow ones. However, the
linear decrease of 7,(w) with width that was assumed in
that analysis may not be accurate. This is suggested by
the observation that 7,(w) is independent of width for
75w S 17 at =—0.167. I have not thought it impor-
tant to clarify this quantitative detail. My qualitative ob-
servation is that 7, is very short for narrow pulses, al-
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FIG. 32. The neutral Rayleigh number r,(w) is plotted as a
function of width for defect-free confined states at = —0.127,
—0.167, and —0.210 (solid curves) and for defected confined
states at = —0.127 (dotted curve). The result for = —0.253
shown previously in Fig. 12 overlaps the curve for y=—0.210
and has therefore been deleted for clarity. The horizontal bars
at the left ends of the solid curves denote the lower limits 7, of
existence of narrow pulses. As indicated by the dashed seg-
ments, the solid curve for ¥y=—0.127 has been interpolated in
the range 6 Sw S 11, and the curve for Y= —0.167 has been ex-
trapolated beyond w=21.

though this has not been explicitly measured.

Table III shows the separation-ratio dependence of 7,
for different confined states. For defect-free confined
states, this evaluation was explicitly done for w=12
where possible. 7, is seen to decrease to a very low value
as 9 is increased from —0.253 to —0.127. This is one
reason why unstable pulses at = —0.127 evolve so rap-
idly that they require active control. More relevant for
this  experimental control is the  product
y =—1, 'dr, /dw; this is the linear growth rate of pertur-
bations to steady-state solutions of Eq. (1). As shown in

TABLE III. Dynamics of wide confined states. S1 is a stable
confined state; dr,/dw is evaluated for width w=12. S2 is a
stable confined state; both 7,(w) and dr, /dw are evaluated for
width w=12. U is an unstable confined state; dr, /dw is evalu-
ated for width w=12. D is a defected confined state; no width
dependence has been measured. Parentheses denote uncertain-
ties.

¥ State T, —7;\dr, /dw
—0.253 S1 0.306(19) —0.00157(14)
—0.210 S2 0.257(6) —0.00105(10)
—0.167 S2 0.373(21) —0.000 10(10)
—0.127 U 0.08(2) +0.022(4)
—0.127 D 0.244(6) +0.00026(2)
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Table III, y is negative for ¥ < —0.167; these weakly
stable confined states evolve slowly. ¥ is strongly positive
for = —0.127; unstable pulses evolve rapidly. I suspect
that the growth rate of the unstable pulse at = —0.072
that was shown in Fig. 20 of Ref. [10] was even more
strongly positive. Defected confined states at 1= —0.127
are also unstable, but so weakly that they do not require
active control.

Confined states of all widths drift continuously through
the experimental cell. Figure 33 brings together with
measurements of the drift velocity of defect-free confined
states made in this work, plotted vs width w. Consistent
with previous measurements at —0.123 =<y = —0.072
[10], vy, varies strongly with Rayleigh number and sepa-
ration ratio for narrow pulses. The drift velocity of wide
confined states also varies with parameters. At
= —0.127, vy, decreases rapidly with width for w <20.
This dependence is less pronounced at ¥=—0.210 and
absent at ¥y=—0.167. The rather uncertain measure-
ments at Y= —0.253, represented by the shaded rectan-
gle, are roughly consistent with the trend of the more ac-
curate data at less negative 1.

The results in Fig. 33 make it clear why previous ex-
periments in slightly nonuniform cells produced motion-
less, wide confined states which exhibited a locking band
[2]. The reason for this behavior is somewhat different
from the reason that the first observations of narrow
pulses in an annular cell found them to be motionless
[9,10,12,13]. The drift velocity of narrow pulses varies
quite strongly with Rayleigh number. Thus, in a nonuni-
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FIG. 33. The solid curves represent the measurements of the
width dependence of the drift velocity of defect-free confined
states at Y= —0.127, —0.167, and —0.210 which exhibit zero
expansion velocity. As in Fig. 32, dashed segments indicate ex-
trapolated and interpolated values. Drift-velocity measure-
ments at Y= —0.253, whose dependence on expansion velocity
has not been carefully studied, are represented by the shaded
rectangle.
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form cell, a pulse drifts towards the nearest location in
the cell where the Rayleigh number is such that vy =0
and stops there. If the Rayleigh number is then changed,
this location moves, and the pulse follows, coming to rest
at the new location. In contrast, the drift velocity of wide
pulses for —0.2559¥ < —0.19 is very low and nearly in-
dependent of Rayleigh number. Because wide confined
states drift so slowly, they are easily pinned by local inho-
mogeneities in the cell. I speculate that pinning takes
place at geometric rather than thermal features in the
cell; thus changing the Rayleigh number slightly does not
change the location or size of the confined state. Because
v4, depends so weakly on Rayleigh number, a substantial
change in R is required to unpin the confined state. This
picture accounts for the motionlessness of wide confined
states and for the existence of a locking band in previous
experiments. Overcoming these problems in order to ob-
serve the drift of wide confined states has required the de-
velopment of a convection cell which is both thermally
and geometrically very uniform.

The spatiotemporal structure of narrow pulses has
been well documented for ¥ = —0.072 in previous experi-
ments [9-11]. In this paper, I have extended these mea-
surements to wide confined states and to more negative ¢
by computing the TW amplitude, wave-number, and fre-
quency profiles. Certain common features are seen for all
defect-free confined states. In particular, a strong wave-
number gradient is seen near the trailing edge, connecting
to a weaker gradient in the main body of the confined
state. Unstable confined states exhibit a few features
which seem to be generically different from stable
confined states; namely, a stronger wave-number gradient
in the main body of the pulse and phase defects just
ahead of the leading edge. I have speculated that these
microscopic features are related to the lack of dynamical
stability. Comparing the results of the present experi-
ments with the structural observations made at
Y= —0.25 in Ref. [20] leads to the conclusion that the
pinning of wide confined states does not strongly affect
their spatiotemporal structure apart from making the
drift velocity vanish.

The mechanism of destabilization of narrow pulses has
also been the subject of previous experiments in the range
1> —0.089 [10,13-15]. The present work extends these
observations to more negative ¢, and the picture we now
have is reasonably well mapped out, if not completely un-
derstood. Three mechanisms of narrow pulse destabiliza-
tion have been identified. The first is destruction of the
pulse by convective amplification of TW fluctuations [13].
In a cell of length I, the threshold for this process is
found from a linear analysis to be r,=r,,(1+¢,), where

=270, (5)
Ef'_T n)/f .

Here s is the group velocity of small-amplitude TW’s, 7,
is the characteristic time scale for their growth [note that
7o is unrelated to time scale 7, defined in Eq. (1)] [26],
and y, is the gain factor by which naturally occurring

fluctuations must be amplified in order to attain sufficient
amplitude to destroy a pulse. In Ref. [13], we identified
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this mechanism and estimated that y,=40-400 for
1= —0.069. I have measured the group velocity s for all
experiments performed in this apparatus and have
verified that the theoretical value 7,=0.108 [26] is both
independent of ¢ and close to the experimental value
[27].

The second mechanism of pulse destabilization is the
transition from a convective to an absolute instability
[6,15]. The threshold for this reason is also obtained
from a linear analysis and occurs at r,=r,(l1+¢,),
where

$To

2
(14+¢2)7 1, 6)
2§, !

€, =

Here, &, is the characteristic length appearing in the
CGLE, and c; is the linear dispersion coefficient. Experi-
ments support the theoretical results that £,=0.383 is in-
dependent of 1 and that ¢ <0.02 for all values of ¥ un-
der consideration here [3,15,26,27]. Because s « (—)!/%,
the relative values of the thresholds in Egs. (5) and (6) de-
pend both on the cell length I" and on 3. Thus, by using
experimental fluids with different separation ratios in rec-
tangular cells of varying lengths, Kaplan and Steinberg
[15] were able to quantitatively verify that the upper limit
of pulse stability for —0.055 <3 < —0.005 coincided with
the smaller of the two linear thresholds r, and r,. For
this range of separation ratios, the linear analysis correct-
ly predicts the threshold for the destabilization of narrow
TW pulses.

The third mechanism of destabilization of narrow
pulses identified in Refs. [10,14] and explored herein has
been termed ‘“intrinsic destabilization.” When the thresh-
old r, for this process is exceeded, the pulse simply ex-
pands into the rest of the cell, accompanied by a strong
decrease in the phase velocity of the underlying TW’s.
There is no theoretical prediction for r,. The relation-
ship of this process in other destabilization mechanisms is
shown in Fig. 34. There, solid circles represent measure-
ments of r,, and solid squares show measurements of the
linear onset r,. The curve marked r, shows the
convective-absolute threshold in Eq. (6), evaluated using
the measurements of s and r,, and computed values for
other parameters [26]. The fluctuation threshold r,
shown in the correspondingly marked curve was obtained
from Eq. (5), assuming I'=82.47 and y ,=125.

Several important points are evident in Fig. 34. First,
the observation that r, <r, for y=—0.127 and —0.072
explains why fluctuation suppression has been necessary
for the observation of intrinsic destabilization of these
values of 9. Fluctuation suppression effectively erases the
curve r, from the graph, leaving r, as the lowest thresh-
old for pulse destabilization. Second, while 7, depends
on parameters, it can never be less than r,,. Thus, for
¥ = —0.14, where r, <r_,, fluctuations never play a role,
and intrinsic destabilization is the only possible destabili-
zation process. Finally, r, <r, for all ¥ < —0.072. For
these 1, the convective-absolute transition also never
plays a role. The observation in Ref. [15] that, in the ab-
sence of fluctuations, this transition is the first mecha-
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FIG. 34. Thresholds for the destabilization of narrow pulses
are plotted vs separation ratio ¢. Squares show the measured
threshold r; for intrinsic destabilization, and circles show the
measured onset 7, for the onset of convection. The curve
marked 7, is evaluated from the measurements of r,, using Eq.
(5) and parameter values discussed in the text. The curve
marked r, is evaluated using 7., and Eq. (6). In the absence of
fluctuations, the lowest threshold for pulse destabilization for
¥ =< —0.072 is r;. The dashed extrapolation of r, to ¥y > —0.072
is discussed in the text.

nism of pulse destabilization for ¥= —0.055 may mean
that r, >r, for this range of ¥, following the dashed ex-
trapolation of the r, curve in Fig. 34. I will return to this
point below, where I suggest instead that another insta-
bility inherent in the CGLE actually precedes the
convective-absolute threshold and can be identified with
intrinsic destabilization.

The final topic addressed in these experiments concerns
new confined states. Two were encountered. The weakly
unstable defected confined states at ¢¥=—0.127 and
—0.167 were so robust that they could be characterized
in detail. I speculate that the tendency of wide confined
states to develop spatiotemporal defects at these separa-
tion ratios is related to the lack of stability of wide
defect-free confined states. Defected confined states have
also been observed in experiments in a wide rectangular
cell at = —0.089 in Ref. [14], but the presence of an end
wall in those experiments makes their relationship to the
present observations unclear.

It has also been possible to create transient localized
states of nearly steady rolls at = —0.127 and —0.072.
These structures are strongly unstable, rapidly giving way
to drifting patterns of TW’s. It is not difficult to imagine
why this happens: in a pattern of stationary convection
rolls in a binary fluid mixture, the ethanol-concentration
field is in phase with the convective velocity and tempera-
ture fields; that is, convective rolls with opposite circula-
tion directions have equal mean ethanol concentrations
[19,28]. Because of this symmetry, there can be no pre-
ferred propagation direction. However, the fundamental
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reason for the existence of TW’s is that this situation is
unstable at sufficiently low Rayleigh numbers. Some per-
turbation or inhomogeneity always causes a symmetry-
breaking transition to a state in which rolls with different
circulation directions exhibit different mean ethanol con-
centrations. This is turn causes the pattern to move [29].
This effect grows weaker as 1 is made less negative, and
indeed I have been able to create confined states of truly
steady rolls just above onset at y=—0.020 [27]. In those
experiments, it is convectively amplified TW fluctuations
that destabilize the confined state, not a fundamental in-
stability of the convective concentration field. I expect to
be able to observe stable, time-independent confined
states of steady convective rolls at ¢y~ —0.01.

The experimental results presented in this paper can be
compared with those of numerical integrations of the full
Navier-Stokes equations in two dimensions [19]. In these
computations, a wide confined state was observed at
= —0.25 and a narrow pulse was seen at = —0.08.
The drift velocity of the narrow pulse matched the exper-
imental observations in Ref. [12] reasonably well. Now
that drifting wide confined states have been character-
ized, it has become apparent that the computed drift ve-
locity does not match in this case: the numerical
confined states drift forward rather than backward. This
qualitative discrepancy is undoubtedly due to the
influence of the narrow cell width in the experiments.
The interesting qualitative issues that remain to be ex-
plored in the numerical experiments is whether narrow
pulses and defected confined states at large || and unsta-
ble wide confined states at small || can be seen.

Theoretical work on the stability and structure of
confined states is often performed using the complex
Ginzburg-Landau equation. Both analytical work on
simple solutions of this equation and numerical computa-
tion of more complicated solutions have been instructive.
It is useful to consider how the present results can be in-
terpreted in this context. As mentioned above, a linear
analysis of this system predicts thresholds r, and r, for
the destabilization of narrow pulses quantitatively
correctly for ¢y = —0.055, but this agreement does not ex-
tend to ¥ < —0.072. The intrinsic destabilization seen in
this range of i appears to be a nonlinear effect which is
triggered at a lower threshold Rayleigh number. I have
recently noted that the nonlinear dispersion of extended
TW at = —0.127 is also inconsistent with the predic-
tions of the CGLE [22]. It turns out that the coupled-
field model of Ref. [18] is also unstable to match the mea-
sured nonlinear dispersion [27].

If quantitative agreement with experiment is lacking,
then what qualitative guidance can we expect from this
model? First, it should be reiterated that the present re-
sults have established the existence of a discrete family of
confined states whose drift velocity vanishes only on a
measure-zero set of parameters, removing a long-standing
discrepancy between old experimental observations and
the properties of confined-state solutions of the CGLE
[6]. Second, Riecke has shown that the inclusion of a
coupled slow mode corresponding to the experimental
concentration field in this model can account semiquanti-
tatively for both the slow drift of TW pulses and for the

PAUL KOLODNER 50

existence of wide confined states [18]. The properties of
these confined states depend on the parameters of the
model in ways which may only be qualitatively related to
experimental parameters. Finally, the CGLE is known to
exhibit nonlinear pulse destabilization. van Saarloos and
Hohenberg investigated the behavior of separated fronts,
analytically computing the velocity v with which these
move apart [6]. v increases nonlinearly with Rayleigh
number. They verified in numerical experiments that
pulses grow unstable above the threshold €, determined
by the condition v'=0. It is not yet clear whether this
mechanism is the same as the experimentally observed in-
trinsic destabilization. Hakim and Pomeau [8] studied
front propagation analytically, in the limit that the imagi-
nary parts of the coefficients are small, and they studied
the evolution and stability of bound pairs of widely
separated fronts—the equivalent of the wide confined
states in these experiments. They obtained the following
equation for the evolution of the front separation w:

2C,

w

i1£=4§oz(r g )—iexp -

dt 13 &
Here, a is a constant expressing the relationship between
the experimental Rayleigh number and the stress parame-
ter in the CGLE, and r , =r,(w— ). £€>0is a function
of the real parts of the coefficients in the CGLE, and C,
is a function of the imaginary parts. This result is easily
put into the form of Eq. (1): with 7,=1/4£a, the neutral
Rayleigh number is

2w

r(w)=r_ +Be - w/E—C (8)

w
where B =1/a£” and C =C, /2a&. The stability proper-
ties discussed in Ref. [8] are equivalent to the observation
in this paper that confined states are stable (unstable) if
dr,/dw is positive (negative). Confined states are unsta-
ble for all C<0. The behavior of r,(w) in Eq. (8)
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FIG. 35. The function defined in Eq. (8), taken from Ref. [8],
is plotted vs the scaled width w'=2w/§, for B=1, 2, and 4,
with r, =0 and C=1. The progression of these curves as B is
increased matches the qualitative trend seen in r,(w) as ¥ is in-
creased; see Fig. 32.
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matches that observed in the present experiments for
sufficiently small C/B >0, if we postulate that C/B and
r,, are monotonic functions of ¥. To show this, I have
evaluated Eq. (8) for three values of B in Fig. 35, setting
C=1, £=2, and r_, =0 for convenience. The curves for
B=1, 2, and 4 bear a good qualitative resemblance to the
curves for y=—0.210, —0.167, and —0.127, respective-
ly, in Fig. 32, modulo the Rayleigh-number offset and
width scaling [30]. It remains to be shown, of course,
that this correspondence between B and ¥ is physically
correct.

Thus the CGLE exhibits a nonlinear pulse destabiliza-
tion mechanism which at least qualitatively matches the

experimental observations. It is not yet clear whether the
numerical front expansion observed in Ref. [6] is identi-
cal with or even related to the evolution described analyt-
ically in Eq. (8). This relationship, as well as a compar-
ison of both nonlinear thresholds with the convective-
absolute instability threshold, would be quite interesting
to explore. It would also be worthwhile to investigate
this issue using the coupled-field model of Ref. [18]; work
on this topic has recently begun [31].
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FIG. 33. The solid curves represent the measurements of the
width dependence of the drift velocity of defect-free confined
states at = —0.127, —0.167, and —0.210 which exhibit zero
expansion velocity. As in Fig. 32, dashed segments indicate ex-
trapolated and interpolated values. Drift-velocity measure-
ments at = —0.253, whose dependence on expansion velocity
has not been carefully studied, are represented by the shaded
rectangle.



